
Specification of the Stand-in Language

Wolfgang Jeltsch
Well-Typed LLP

wolfgang@well-typed.com

November 15, 2018

1 Introduction

We present a formal specification of the Stand-in Language (SIL) by Sam Griffin. Our
specification closely resembles the version of the language implemented in Commit 966227a
of the GitHub repository sfultong/stand-in-language.

SIL actually consists of two languages: the surface language and the internal language.
While the former constitutes the user-facing part, the latter is the one for which an operational
semantics and a type system are defined.

2 Notation

Throughout this document, we describe syntax using a variant of Backus–Naur form. Our
variant uses the following notations, listed here in increasing order of precedence:

• | denotes set union.

• \ denotes set difference.

• Mere juxtaposition denotes concatenation.

• ?, +, and ∗ denote optionality, repetition with at least one occurrence, and arbitrary
repetition, respectively.

• 〈 and 〉 delimit subexpressions and are used for overriding default precedence.1

• Words in italics are nonterminals.

We introduce further custom notations for various things unrelated to syntax. Since such
notations are tied to specific parts of the specification, we define them where they are needed.

1We do not use (and) for this purpose, since they are part of some of the languages we want to describe.

1

Tokeni ::= Keywordi | Symboli
Keywordi ::= left | right |withenv | env | gate | defer | abort | trace

Symboli ::= { | , | } | ; | (|)

Figure 1: Token syntax of the internal language

Progi ::= Expri

Expri ::= Pairi | Lefti | Righti | Zeroi |WithEnvi | Envi | Gatei | Deferi | Aborti | Tracei | (Expri)

Pairi ::= {Expri, Expri}
Lefti ::= left Expri

Righti ::= right Expri

Zeroi ::= ;
WithEnvi ::=withenv Expri

Envi ::= env

Gatei ::= gate Expri

Deferi ::= defer Expri

Aborti ::= abort Expri

Tracei ::= trace Expri

Figure 2: Syntax of the internal language

3 The Internal Language

The internal language is a low-level language, which in particular has no built-in support for
closures. It comes with an operational semantics and a type system.

3.1 Syntax

Figure 1 defines the syntax of tokens. Based on that, Figure 2 defines the syntax of the
language.

3.2 Semantics

Common functional programming languages express dependencies on external data and
function arguments by means of variables. The internal language does not have variables
technically, but the expression env can be considered a single variable. Following this view,
an expression defer e corresponds to an abstraction (“λ-expression”) λenv . e. Because such
an abstraction binds the only variable that exists, the body of a defer expression cannot refer
to variable assignments outside the defer expression. This means that the internal language
does not support closures natively.

It is customary in the functional programming world to evaluate function expressions to

2

E ` e1→ e′1 E ` e2→ e′2
E ` {e1, e2} → {e′1, e′2}

E ` e→ {e1, e2}
E ` left e→ e1

E ` e→ e′ ∀e1 e2 . e′ 6= {e1, e2}
E ` left e→ ;

E ` e→ {e1, e2}
E ` right e→ e2

E ` e→ e′ ∀e1 e2 . e′ 6= {e1, e2}
E ` right e→ ;

E ` ;→ ;

E ` e→ {e1, e2} e2 ` e1→ e′

E `withenv e→ e′

E ` env→E

E ` e→ ;
E ` gate e→ left env

E ` e→ e′ e′ 6= ;
E ` gate e→ right env

E ` defer e→ e

E ` e→ ;
E ` abort e→ ;

E ` e→ e′

E ` trace e→ e′

Figure 3: Operational semantics

abstractions. If we would do the same for the internal language, evaluation of any function
expression would result in an abstraction that binds env, because there is no other variable.
Since mentioning the bound variable env would not provide any information, we yield only
the bodies of the abstractions as evaluation results.

Expression evaluation happens in an environment. The environment is an evaluated
expression that characterizes the value of env. Figure 3 defines a relation − ` − → − ⊆
Expr×Expr×Expr that constitutes the big-step (evaluation) semantics of the internal language.
A proposition E ` e→ e′ is true if and only if evaluating the expression e in the environment E
may yield the expression e′.

The relation − ` − → − is in fact a partial function. This means that evaluation is
deterministic: it either fails or leads to a uniquely defined expression.

The semantics only covers the pure aspects of execution. The trace construct is actually
impure, as it outputs diagnostic information. Our semantics ignores that, treating any
expression of the form trace e like e.

3

Type ::= Type0

Type0 ::= FunType | Type1

FunType ::= Type1⇒ Type0

Type1 ::= PairType | ZeroType | TypeVar | (Type0)

PairType ::= {Type0, Type0}
ZeroType ::= ;
TypeVar ::= Letter

Figure 4: Type syntax

; ≈ {;,;}

τ1 ≈ τ′1 τ2 ≈ τ′2
τ1⇒ τ2 ≈ τ′1⇒ τ

′
2

τ1 ≈ τ′1 τ2 ≈ τ′2
{τ1,τ2} ≈ {τ′1,τ′2} ; ≈ ;

α ∈ TypeVar
α≈ α

τ1 ≈ τ2

τ2 ≈ τ1

τ1 ≈ τ2 τ2 ≈ τ3

τ1 ≈ τ3

Figure 5: Equivalence of types

3.3 Type System

The type system of the internal language is special in two ways:

• There are two typing relations, one for unevaluated and one for evaluated expressions.
This is necessary, because function expressions are evaluated to expressions that do not
describe the functions themselves but their results. If we would use the same typing
relation for unevaluated and evaluated expressions, the type of an expression could
change through evaluation.

• The type system does not distinguish between different types of nested pairs. Each
nested pair type contains all nested pairs.

Figure 4 defines the syntax of types, and Figure 5 defines an equivalence relation on types
that identifies all nested pair types. Based on that, Figure 6 defines the typing relation
− ` − : − ⊆ Type × Expr × Type for unevaluated expressions. A proposition T ` e : τ is
true if and only if the unevaluated expression e has type τ provided that the environment
has type T . Finally, Figure 7 defines the typing relation − : − ⊆ Expr× Type for evaluated
expressions.

Conjecture 1 (Type preservation). If E : T , T ` e : τ, and E ` e→ e′, then e′ : τ.

4

T ` e1 : τ1 T ` e2 : τ2

T ` {e1, e2} : {τ1,τ2}

T ` e : {τ1,τ2}
T ` left e : τ1

T ` e : {τ1,τ2}
T ` right e : τ2

T ` ; : ;

T ` e : {τ1⇒ τ2,τ1}
T `withenv e : τ2

T ` env : T

T ` e : ;
T ` gate e : {τ,τ} ⇒ τ

τ1 ` e : τ2

T ` defer e : τ1⇒ τ2

T ` e : ;
T ` abort e : ;

T ` e : τ
T ` trace e : τ

τ1 ≈ τ2 T ` e : τ1

T ` e : τ2

Figure 6: Typing rules for unevaluated expressions

e1 : τ1 e2 : τ2

{e1, e2} : {τ1,τ2}

; : ;

T ` e : τ
e : T ⇒ τ

τ1 ≈ τ2 e : τ1

e : τ2

Figure 7: Typing rules for evaluated expressions

5

Token ::= Ident | Str | Nat | Keyword | Symbol

Ident ::= Letter〈Letter | Digit | _ | ′〉∗ \Keyword

Str ::= “Char∗”

Nat ::= Digit+

Keyword ::= let | in | if | then | else | left | right | trace

Symbol ::= : |= | \ | → | # | [|] | , | $ | { | } | (|)

Figure 8: Token syntax of the surface language

4 The Surface Language

The surface language is a high-level language, which in particular has support for closures.
Programs in the surface language are translated to the internal language using a process
called desugaring. The surface language does not have an operational semantics of its own;
a surface language expression is evaluated by first desugaring it and then evaluating the
resulting internal expression. Currently, the surface language does not have a type system.

4.1 Syntax

Figure 8 defines the syntax of tokens. Based on that, Figure 9 defines the syntax of the
language. The nonterminals CLam, TNat, and FNat stand for “complete lambda”, “tuple
natural”, and “function natural”, respectively.

4.2 Desugaring

For defining desugaring, we introduce the following notations:

• 〈e〉x 7→e′ means the expression e with free occurrences of x replaced by e′.

• c# means the natural number literal that represents the code of the character c.

• n+ means the natural number literal that represents the successor of n.

• f n x means the n-fold application of f to x , that is, f . . . f x where f occurs n times.

Desugaring of an expression happens in a context, which is the list of variables that are
in scope, with variables bound closer to the expression being listed later. We write ε for
the empty context and ∆ Â x for the context ∆ extended by x . An internal expression
obtained by desugaring in a context ∆ is supposed to be evaluated in the environment
{en, {en−1, {. . . , {e1,;} . . .}}} where each ei is the value of the i-th variable in ∆.

We introduce a helper function ρ : Var+ × Var→ Expri such that ρ(∆, x) yields an internal
expression that is evaluated to a pair whose first element is the value of x . The definition
of ρ is as follows:

ρ(∆Â x , y) =

¨

env if x = y

right ρ(∆, y) if x 6= y
(1)

6

Prog ::= Assign+

Assign ::= Ident 〈: Expr0〉
? = Expr0

Expr0 ::= Let | If | Lam | CLam | Expr1

Let ::= let Assign∗ in Expr0

If ::= if Expr0 then Expr0 else Expr0

Lam ::= \ Var+→ Expr0

CLam ::= # Var+→ Expr0

Expr1 ::= App | Expr2

App ::= Expr1 Expr2

Expr2 ::= List | Str | TNat | FNat | Pair | Left | Right | Trace | Var | (Expr0)

List ::= [] | [Expr0〈, Expr0〉
∗]

TNat ::= Nat

FNat ::= $Nat

Pair ::= {Expr0, Expr0}
Left ::= left Expr2

Right ::= right Expr2

Trace ::= trace Expr2

Var ::= Ident

Figure 9: Syntax of the surface language

7

Figure 10 defines a function b−c− : Expr × Var∗ → Expri that describes desugaring of
expressions. A term bec∆ gives the internal expression that corresponds to the surface
expression e in the context ∆. Based on b−c− we define a function b−c : Prog→ Progi that
describes desugaring of programs:

bpc= blet p in maincε (2)

8

blet in ec∆ = bec∆
blet x = e′ : e′′ ā in ec∆ = blet x = e′ ā in ec∆
blet x = e′ ā in ec∆ = b〈let ā in e〉x 7→e′c∆

bif e then e1 else e2c∆ =withenv {gate bec∆, {be1c∆, be2c∆}}
b\ x̄ → ec∆ = {defer bec∆◦ x̄ ,env}
b# x̄ → ec∆ = {defer bec x̄ ,;}
be1 e2c∆ =withenv

withenv {
defer {left right env, {left env, right right env}},
{be2c∆, be1c∆}

}
b[]c∆ = ;

b[e, l]c∆ = {bec∆, b[l]c∆}
b“ ”c∆ = ;
b“cc̄”c∆ = {bc#c∆, b“c̄”c∆}
b0c∆ = ;
bn+c∆ = {bnc∆,;}
b$nc∆ = b# f x → f n xc∆

b{e1, e2}c∆ = {be1c∆, be2c∆}
bleft ec∆ = left bec∆
bright ec∆ = right bec∆
btrace ec∆ = trace bec∆

bxc∆ = left ρ(∆, x)

b(e)c∆ = bec∆

Figure 10: Desugaring of expressions

9

	Introduction
	Notation
	The Internal Language
	Syntax
	Semantics
	Type System

	The Surface Language
	Syntax
	Desugaring

